If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+20x=16
We move all terms to the left:
6x^2+20x-(16)=0
a = 6; b = 20; c = -16;
Δ = b2-4ac
Δ = 202-4·6·(-16)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-28}{2*6}=\frac{-48}{12} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+28}{2*6}=\frac{8}{12} =2/3 $
| x+22=98 | | -7k+8k=4 | | 105=p+12 | | 112=-7a | | 17y+34=170 | | 0.4x+2.5=0.2x−4 | | 5x+6=9x+3- | | 12y+60=13y+50 | | 12x+3=-51 | | 7/3-w=-2/3 | | 9+9p=6p | | -5r-6(r+4)=-3-4r | | 0,5p=p-42 | | 39.99+.45a=44.99+.45a | | 4(2n+5)=7(8n+6)+9 | | 2h+12=46 | | 10=3-2.50x | | 2/7x=12/7 | | 12x-3-4x+6=-2x-87 | | -4n+8(-n+8)=-16+4n | | (1/5)x+1/3=4/3* | | 6(y+5)+y=3(7+4)+2 | | F(x)=1/5(x+3)^2-7 | | 8(y-1)-3y=6(2y-6)* | | -6x-4(x+9)=14 | | F(x)=20-1.50x | | 15x-8(4x+3)=-7 | | q/7+1=2 | | 8-2p=-8 | | 5+7x=x+53 | | 2(r-10)=14 | | 7x=4x-8 |